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ABSTRACT

This paper summarises theoretical models for the aerodynamidigaties of long span
bridges. The discrete vortex method (DVM) is applied to solve theN&tokes equations
which describe the air-flow around bridges. Several wind design checks argsdi$cranging
from one degree-of-freedom stability checks to the determinati@nitafal wind velocities
for classical flutter. The numerical implementation into a bridgsign software package is
outlined and practical examples are presented.

1 INTRODUCTION

Due to the increased amount of newly constructed suspension and caddelstdges with
extremely long spans all over the world, advanced wind design becoanesand more an
issue of high importance. During the last century a couple of distanotlynamic phenomena
have been observed and investigated for such bridges [1, 2]. Long span bridgesepide
to wind induced vibrations and resulting damage mainly for two reasomdong spans
resemble more and more guitar chords with the according vibration pespartd the slender
cross sections display in the worst case an airfoil-like behaviberefore sophisticated wind
design considerations in the design phase of such bridges are & reststntate the risks and
maximize safety.

Bridge engineering and design with regard to static and dynamicrpespis nowadays
almost entirely performed virtually on computers (e.g. [3]). But winiéghods to calculate the
static of bridges, e.g. FEM calculations, are well establishedwadely used, investigation
methods for dynamic wind influence are a state-of-the-art but natopemon topic. They
provide valuable additional information to the well trusted wind tunnelsareaents but
have are not yet considered as stand-alone tools. One reason fethaire no all-in one
solutions available, i.e. there are only methods which cover a paneadverall analysis.
Good tool are available for the characterization of the air flmural bridge decks [4, 5]. The
full 3D flutter equations have been solved in [6]. In this paper we mresethods to combine
all necessary steps for a comprehensive wind design analysis into one softwage pac



The first step is to investigate the air flow around the involvedscisections. In this
context the main deck cross section is of highest importance, loutvalee phenomena of
double legged pylons may play a role. The temporal evolution of theidlgaverned by the
Navier-Stokes equations and a discrete vortex method (DVM) [Ppised to find numerical
solutions. For different flow situations different characterigéiltes can be derived which are
used in the following to investigate divergence and stability phenommeshaorresponding
critical wind velocities. The problems discussed in this paper inajadleping, torsional
divergence and flutter instabilities. Examples of the applicatiorthef presented design
criteria to practical problems (Hardanger and Storebeelt bridge) will baexltli

2 WIND LOAD AND AERODYNAMIC COEFFICIENTS

When a bridge is exposed to an oncoming wind flow, it will expericiocees and
overturning moments due to the wind pressure. In aerodynamics it isagotomelate wind
forces to the wind direction (cf. Figure 1), where the drag ffaraets along and the lift force
fi perpendicular to the wind direction.

Figure 1. Definition of wind direction and aerodynamic forces.

The time averaged forces (marked with a subserlpreinafter) on a fixed cross section
are commonly expressed by the steady state aerodynamic coeffogjenedc,, via
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In the above equations it should be noted that the forces are giventperimgpan length.
The mass density of air is denoteddyyand{y, £, anda are normalisation lengths and areas,
respectively. In bridge engineering it is common to relate the almation for lift and
moment to the width of the cross sectiod; = b anda = b?. The normalisation for drag is
either related to cross section widtlor heightd.

In principle the steady state coefficients are dependent both on wectiah a and
velocity u.. However the cross section used for bridges normally displaylégsndence on
the velocity so that only the angle dependence is considered. Thewslastally expressed
in terms of the non-dimensional Reynolds number

Re= UaP @)
v

wherev is the kinematic viscosity of air, because if a model and the full scale coties see
considered at the same Reynolds number, the flows are equivalentadthis exploited in
every wind tunnel measurement. However it must be noted that admiBsjpholds numbers
in wind tunnels are of order 10while in reality Re > 10 Therefore an important preliminary
for such tests is that the steady state coefficients iprindous assumption of Reynolds
number independency next to several other similarity requirements|[1, 8].



The time dependent lift and moment forces (with substyifar oscillating cross sections
are expressed by the so called flutter derivativeandh,” as suggested by Scanlan [1]. They
relate the resulting forces to the vertical and torsional displeetsh anda, respectively, and
their first derivatives with respect to time:
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The flutter derivatives are dependent on reduced frequentyw/ u., wherewis the circular

frequency of oscillation. It should be noted that due to historical redsenguantities are
given with inverse sign compared to the steady state coefficeegtsvith positive sign of lift
and heave in downward direction. In most practical cases the fligttatives are not given
in dependence &, but of the reduced velocityey = 277/ k.

3 WIND DESIGN CHECKS

The performed design checks cover different phenomena which have beed stuthie
framework of bluff body aerodynamics. Corresponding theoretical modedgpiain these
phenomena are based on equations of motion of the body in which certairs aédreedom

are frozen and the acting forces are derived from the availabbelyamamic coefficients.
Normally, only heaveh and torsiona are considered as degrees of freedom and if it is
assumed that the centre of mass coincides with the elastic centre, the gowgratians are

{3 +2¢,cqh+ afh) = ,
(4)
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Mass and moment of inertia are given tmyand m,, respectively. The natural circular
frequencies are denoted lay, and w,, ¢ and ¢, are the critical damping ratios. Driving
aerodynamic forces afeandf,. These structural can enter the calculation either as aybitrar
additionally provided parameters, or they can be obtained from a prahymEigenmode
calculation of the structural system.

3.1 Galloping

According to [1], galloping is a low frequency oscillation in acregsd direction. Therefore,
the aerodynamic forces can still be derived from steady-staf@iatents, but the motion of
the cross section causes a varying relative wind velacigs illustrated in Figure 2.



Figure 2. Relative velocity due to cross section heave in galloping case.

For low frequencies the approximatidr<< u., holds, and the drag and lift contributions
along the heave direction can be estimated by
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The term in round brackets leads to an additional system damping &modvi; as the
Glauert-Den Hartog criterion. Whenever this term becomes neghgvsystem tends to an
unstable solution. Since drag is always positive, galloping can only ticbe slope of lift is
negative atr = 0.

3.2  Torsional divergence

In many cases the moment coefficient is a monotonically inorgdanction of the wind
incident angle. This is obvious for flat-plate-like cross sectionaumex for increasing angle
more area is exposed to the oncoming wind which results in increasgdrning moment.
Consequently the following stability problem can be observed for cross sectionschsd ket
Figure 3. as reaction to an initial twisting moment, the crestian will experience some
twisting which increases the attack angle. Therefore the twisting momesdses, and so on.

Figure 3. Mounting of cross section for torsional divergence problem

As long as the wind velocity is below some critical velocity, an gxiiim can be found at
which twisting and reactive moment are equal. If the momentunmdarised around zero
attack angle, this equilibrium is given by

kaa = %mia(cmo + C;noa) (6)

A stable solution for the deflectiamto this equation can only be found if
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In engineering applications it is common to expréss torsional stiffness via the circular
frequency and moment of inertia \Ka=m, cq,z.

3.3 Classical flutter

In the case of classical flutter, a coupling of th@® equations of motion (4) is observed.
According to the wind velocity a small oscillatiatue to an initial disturbance leads to
decaying, stable or sustained oscillations at ancomfrequency and a phase shift depending
on the flutter derivatives. The critical wind veliycis again the velocity of transition from
damped to sustained solution. It is calculatedatipding the method presented in [1, 9].
Since at critical wind velocity the solution must Bn undamped oscillation, an ansatz
(h, @) = (ho, ap) exp(at) with wl R can be chosen. By inserting this ansatz into thuaons
of motion (4) with the aeroelastic forces (3), rrelr systenM-(ho,a0) = O is obtained. This
system has non-trivial solutions only if the deteramt of the coefficient matrix vanishes.
Because of the used ansatz, the matrix coeffici@@scomplex numbers and the determinat
evaluates to a polynomial of fourth orderdnBy considering the real and imaginary part of
this equation separately, which is possible becthesé&equency is real, two real polynomials
of fourth and third order are established:

detM) = P, (aw k) = P, (w k) +iP; (wK) (8)

The coefficients of these polynomials dependkatia the involved flutter derivatives, and
a common solution to both polynomials to fulfil ) = O is only possible for certain values
of the reduced frequendy as indicated in Figure 4. Once such values for rédduced
frequencykir and frequencywi: have been found, the critical velocity can be wdaked
directly from the definition of the reduced frequagn
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Figure 4. Solutions to the polynomids andP3
and common solution for flutter problem

3.4  Single degree of freedom torsional flutter

For certain types of cross sections the flutterffiment a, becomes positive. In this case
unstable solutions to the flutter equations aresipdes even if no coupling occurs. The single
degree of freedom equation of motion for twisthisrt given by
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For bridge deck sections the moment of inertiasigally high enough so that the resonant
frequencyay: is almost the same ag, of the undisturbed system. Therefore the reduced
frequency can be approximated by by, / U, in the above equation. The critical point is at
the transition from damped to sustained oscillatath di,; = O which happens for a critical
flutter coefficienta,. . This implies a critical reduced frequenkyfrom which the critical
velocity can be calculated:

=4Zg—2m” K = u, =>% (10)
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4 DISCRETE VORTEX METHOD

The temporal evolution of air flow around a two dimsional bluff body like a bridge deck
cross section can be described by the Navier-Stelgastions. If the air is assumed to be
incompressible and of constant viscosity at a fikatperature an equivalent description is
provided by considering vorticityy= [0 x u, whereu denotes the velocity vectdts temporal
behaviour is governed by the so called vorticigngport equation

%—i"+(u M)w=vO?u (11)

Due to the assumed constant density the contirgjtyation] - u = 0 must hold. The system
is closed by the Biot-Savart relation to recongtuadocity from vorticity:

uix)=u, -
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whereu,, is the prescribed onset flow.

First attempts to solve these system of equatiomsenically where attempted in the field
of aeronautics (e.g. [10]). The basic idea of thsecigte Vortex Method is to represent the
vorticity field a(x) by a large number of vortex particles of a gigeae o according to

(X) = Zi O, (X=X, (13)

wherer’; is the total circulation of the vortex particledatihe core functiord, describes the
shape of the vortex. Commonly the core functioa Birac delta like function like a Gaussian
distribution. By introduction this simplificatiorhé Biot-Savart integral collapses taa n
particle interaction. In order to establish an cint numerical evaluation, sophisticated
algorithms must be applied: lumping and vortex @il enethods [11], the so callec’\®
method [4] or the adaptive multipole algorithm [2]. The latter one is also used in the
present case.



Additionally to the determination of the velocitythin the fluid domain, specific boundary
conditions must be applied along the cross sedigfine. By imposing a surface vorticity
layer determined by boundary element or Martensethade7], either the no-penetration or
no-slip boundary condition can be enforced. Acaggdio Walther and Larsen [13] it is
sufficient to apply the no-penetration togetherhwgbnservation of total circulation to fulfil
the no-slip boundary condition implicitly.

Finally the time evolution of the vorticity fields iintegrated numerically by applying a
fractional step method. In the first convectionpstihe second term an the left hand side of
equation (11), the movement of the vortex partidésng their characteristics within the
velocity field is considered. The integration isrfpemed in Lagrangian manner with a
forward Euler discretisation. The diffusion term ¢me right hand side of the vorticity
transport equation is treated with the random waéithod suggested by Chorin [14]. Each
particle is moved a randomly distributed distante & random direction. For large numbers
of particles this approach converges to the exatution of the diffusion operator.
Simultaneously to the diffusion of free vortice® thorticity bound in the layer next to the
body outline is converted into nascent vortices diffdsed into the flow.

The vorticity-flux created by the nascent vortidgssalso used to determine the time-
dependent pressure distribution along the crodsoseautline up to an unknown datum value.
By integrating the pressure along the surface hie®ries of force and moment are obtained.
From these time traces the steady state coeffeciar@ calculated straightforward in spite of
their definition (1). To calculate the flutter deatives either forced vertical or torsional
oscillations are imposed on the cross section. ddreesponding time histories of lift and
moment can be compared with the theoretical onds,equation (3), with the methods
discussed in [9] to yield the unknown coefficients.

5 PRACTICAL EXAMPLES

The first presented example is a CFD investigatiotine steady state coefficients for the deck
cross section of the Hardanger bridge in Norwayis Buspension bridge with two traffic
lanes and a cycle and pedestrian path will crossfjdrd of same name in Norway. It will
have a main span of 1310 m and a total length 8018. The bridge towers will elevate to
186 m above sea level. The calculations were paddrfor a simplified cross section as
indicated in Figure 5. The calculated steady stagfficients are presented in Figure 6.
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Figure 5. CFD cross section model for Hardangetgari



15

//
1.0< pa
= 05 | —e—o o=
=
(&) | —
- P AN
S 0.0 —
d A
&
05 _
-1-0 "\/ T T T T T T T T
10 8 6 4 2 0 2 4 6 8 10
al’l

Figure 6. Steady state coefficientd0), ¢ (A) andcy, (O) of Hardanger bridge for
Re = 5.5 - 10(solid) and Re = 10(dashed).

The calculations were performed at full scale waped corresponding to a Reynolds
number 5.5 - 10and at Re = R0which can usually be achieved in wind tunnels.gaad lift
show an average difference of 10% and moment olitab®o with a good qualitative
coincidence. Therefore the assumption of Reynoldsber independency is justified. The
slope of the lift coefficient is positive for albnsidered wind directions which indicates that
galloping will not occur.

Flutter investigations were performed for the GrBait East bridge. This example is
especially well documented both experimentally amonerical. The main cross section
resembles that of the Hardanger bridge, but it asenstretched with a width of 32 m and a
height of 4.3 m. The flutter derivatives calculatgith the implemented DVM for Re = 10
are shown in Figure 7 for the vertical coefficiems and in Figure 8 for the torsional
coefficientsa; . A good agreement with numerical results obtaimgtivalther [9] is observed.
The necessary structural data for the wind dedigclcs according to [9] is given in Table 1.
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Figure 7. Flutter derivatives, (A), h, (O), hs (0) andhs () of Great Belt bridge.
Results by Walther [9] are indicated by light syrisbo
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Figure 8. Flutter derivatives, (A), a; (O), as (0) andas (X) of Great Belt bridge.
Results by Walther [9] are indicated by light syrisbo

0 m my w2 wyl 21
kg/m® kg/m mg m Hz Hz
1.2 17.8 -1 2.173-16  0.099 0.186

Table 1: Structural data for wind design check céd® Belt Bridge.

First it can be observed that the flutter coeffiti@ is negative for all reduced velocities.
This implies that single degree of freedom torsidhdter is not possible. If an undamped
system is assumed the critical velocity for cleasitutter is 41.8 m/s. CFD calculations
performed by Walther [9] result in 35.3 m/s and @waluation based on flutter derivatives
measured by Reinhold et al. [15] yields 37.6 m/BisTis an acceptable agreement. By
increasing the critical structural damping to 0.58 critical flutter velocity is only slightly
increased to 43 m/s.

6 CONCLUSIONS

This paper outlined the theoretical backgroundhefnecessary steps of wind design of long
span bridges. To this end the overall process itea into the characterisation of the air
flow and corresponding aerodynamic coefficientsri®ans of the DVM. The second step was
to evaluate the different design checks with thevimusly calculated coefficients. Several
tests for the steady state coefficients predictggad applicability for the full scale model.
Comparisons of the flutter prognosis with wind tahtest as well as numerical simulations
showed a good agreement.

The overall analysis was performed within one safewpackage. The advantage of this
approach was that the same cross sections caredeasdasis for the structural analysis and
the CFD calculation. Moreover, the data exchangevdmst different analysis tasks was
simplified and accelerated. Thus the applicatiorswth an all-in-one solution significantly
improves the efficiency of design tools for lon@sbridges.
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